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Mixture of Experts

3



Background of MoE (~30 years ago)

● Dates back at least 30 years to the work Adaptive 

Mixtures of Local Experts[1]. 

● In early concepts, an expert was defined as an 

entire neural network and the MoE was similar to 

ensemble methods[2].
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[1] R. A. Jacobs, M. I. Jordan, S. J. Nowlan and G. E. Hinton, "Adaptive Mixtures of Local Experts," , Neural Computation
[2] William Fedus et. al. A Review of Sparse Expert Models in Deep Learning



Background of MoE (RNN Era)[3]

● Backbone: RNN 

● MoE layer: multiple FFN experts

● Gating/routing network (also a FFN): assign tokens into different experts
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[3] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer



Background of MoE (Transformer Era)

● Replace the original FFN layers with sparse FFN ones (expert layers).
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Motivation

Compared to dense models, MoE has two major advantages:
1. More unique model parameters can be included given similar computational budgets 

(FLOPs), which improves model performance empirically;
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Motivation

2.    Functional specialization among expert modules, which improves the model 
interpretability. 

8



Switch Transformer
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Switch Routing: Rethinking Mixture-of-Experts.

Mixture of Experts
Route to k experts, where k > 1

Switch Transformer
Only route to a single expert (k = 1)

Benefits:
1. Router computation is reduced.
2. Batch size of each expert can be halved.
3. Communication costs are reduced.
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Expert Capacity
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Preventing Token Dropping with No-Token-Left-Behind
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A Differentiable Load Balancing Loss
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Improved Training and Fine-Tuning Techniques

Issues with Mixture of Experts (MoE)
● Model complexity
● High communication costs
● Training instabilities 

To improve training and fine-tuning of sparse models, Switch 
Transformers used…
1. Selective precision with large sparse models.
2. Smaller parameter initialization for stability.
3. Regularizing large sparse models.
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1. Selective precision with large sparse models

● Model instability hinders the ability to train using efficient bfloat16 precision, so float32 
precision was used for MoE. 

● Solution: Selectively cast to float32 precision 
● Calculations within the router function are done in float32 precision 
● Resulting dispatch and combine tensors are recast to bfloat16
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2. Smaller parameter initialization for stability

They found that sparse expert models are sensitive to initialization scale. They reduced 
the default Transformer initialization scale s = 1.0 by a factor of 10. 
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3. Regularizing large sparse models

Consider pretraining and then fine-tuning on smaller downstream tasks. Switch 
transformers have high parameter counts and are prone to overfitting. 
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Scaling Properties

18



Scaling Results on a Step-Basis

Number of experts Training steps
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Scaling Results on a Time-Basis

Wall-clock time
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Fine-Tuning
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Fine-tuning results

For most tasks, we 
found significant 
improvements of the 
Switch Transformer 
variants. 
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Model Distillation
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Distilling Switch Transformers for Language Modeling

● Initialized the student model with weights from the teacher’s non-expert layers
● Used a mix of probabilities from the teacher model (25%) and ground truth labels (75%)

Could keep roughly 30% of the the performance improvements even after distilling a 
model with 100x more parameters back into a small dense model. 
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Distillation compression rates
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Distilling a fine-tuned model

● Distill a Switch-Base model fine-tuned on the SuperGLUE tasks into a T5-Base model

Again, we achieve 30% of the teacher’s performance on a 97% compressed model.
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Multilingual Learning

27



Multilingual Learning

● Pretrain on the multilingual variant of the Common Crawl data set (mC4), spanning 
101 languages
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Data and Model Partitioning 
Strategies
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Designing Models with Data, Model, and Expert-Parallelism

30



Towards Trillion Parameter 
Models
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Designing Models with Data, Model, and Expert-Parallelism

● Create Switch-C (395 billion parameters) and Switch-XXL (1.6 trillion parameters) 
using expert, model, and data parallelism techniques.  
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My Final Thoughts

● Is a novel approach to scaling large models with a lot of parameters without a 
proportional increase in computational cost. 

● Has strong knowledge task performance, but has uneven performance on reasoning 
tasks

● However, need to further improve training stability for the largest models like 
Switch-XXL. 

● Need to research more into how sparse models scale in relation to different hardware 
configurations

● Extend Switch Transformers to other modalities, like image or audio data
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Thank you!
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